Integration Guide
Prerequisites
Your Android App’s SDK Version must be greater than or equal to 19.
Add the PGSDKVR4 AAR library to your app:
· Click File > New > New Module.
· Click Import .JAR/.AAR Package then click Next.
· Enter the location of the PGSDKVR4 AAR file then click Finish.
Make sure PGSDKVR4 library is listed at the top of your settings.gradle file, as shown below:
For SDK 19-27
include ':app', ':PGSDKVR4'
For AndroidX
include ':app', ':pgsdkv5ax'
Open your app module’s build.gradle file and add the below line to the dependencies block as shown in the following snippet:
For SDK 19-27
dependencies 
{
    implementation project(":PGSDKVR4")
}
For AndroidX
dependencies 
{
    implementation project(":pgsdkv5ax")
}
Click Sync Project with Gradle Files.
Make sure you have the below permissions in your manifest file:
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
Code Explanation
Note
Your App must use the latest security standards to prevent your code being compromised.
[image: ]
Initiate the “com.test.pg.secure.pgsdkv4.PaymentParams” CLASS to set the payment parameters:
PaymentParams pgPaymentParams = new PaymentParams();
pgPaymentParams.setAPiKey(SampleAppConstants.PG_API_KEY);
pgPaymentParams.setAmount(SampleAppConstants.PG_AMOUNT);
pgPaymentParams.setEmail(SampleAppConstants.PG_EMAIL);
pgPaymentParams.setName(SampleAppConstants.PG_NAME);
pgPaymentParams.setPhone(SampleAppConstants.PG_PHONE);
pgPaymentParams.setOrderId(SampleAppConstants.PG_ORDER_ID);
pgPaymentParams.setCurrency(SampleAppConstants.PG_CURRENCY);
pgPaymentParams.setDescription(SampleAppConstants.PG_DESCRIPTION);
pgPaymentParams.setCity(SampleAppConstants.PG_CITY);
pgPaymentParams.setState(SampleAppConstants.PG_STATE);
pgPaymentParams.setAddressLine1(SampleAppConstants.PG_ADD_1);
pgPaymentParams.setAddressLine2(SampleAppConstants.PG_ADD_2);
pgPaymentParams.setZipCode(SampleAppConstants.PG_ZIPCODE);
pgPaymentParams.setCountry(SampleAppConstants.PG_COUNTRY); 
pgPaymentParams.setReturnUrl(SampleAppConstants.PG_RETURN_URL);
pgPaymentParams.setMode(SampleAppConstants.PG_MODE);
pgPaymentParams.setUdf1(SampleAppConstants.PG_UDF1);
pgPaymentParams.setUdf2(SampleAppConstants.PG_UDF2);
pgPaymentParams.setUdf3(SampleAppConstants.PG_UDF3);
pgPaymentParams.setUdf4(SampleAppConstants.PG_UDF4);
pgPaymentParams.setUdf5(SampleAppConstants.PG_UDF5);
Initailize the com.test.pg.secure.pgsdkv4.PaymentGatewayPaymentInitializer class with payment parameters and initiate the payment:
PaymentGatewayPaymentInitializer pgPaymentInitialzer = new PaymentGatewayPaymentInitializer(pgPaymentParams,MainActivity.this);
pgPaymentInitialzer.initiatePaymentProcess();
To receive the json response, override the onActivityResult() using the REQUEST_CODE and PAYMENT_RESPONSE variables from com.test.pg.secure.pgsdkv4.PaymentParams class
Payment Response CodeSuccessful Payment Json ResponseFailed Payment Json Response
@Override
    protected void onActivityResult(int requestCode, int resultCode, Intent data) {

        if (requestCode == PGConstants.REQUEST_CODE) {
            if(resultCode == Activity.RESULT_OK){
                try{
                    String paymentResponse=data.getStringExtra(PGConstants.PAYMENT_RESPONSE);
                    System.out.println("paymentResponse: "+paymentResponse);
                    if(paymentResponse.equals("null")){
                        System.out.println("Transaction Error!");
                        transactionIdView.setText("Transaction ID: NIL");
                        transactionStatusView.setText("Transaction Status: Transaction Error!");
                    }else{
                        JSONObject response = new JSONObject(paymentResponse);
                        transactionIdView.setText("Transaction ID: "+response.getString("transaction_id"));
                        transactionStatusView.setText("Transaction Status: "+response.getString("response_message"));
                    }

                }catch (JSONException e){
                    e.printStackTrace();
                }

            }
            if (resultCode == Activity.RESULT_CANCELED) {
                //Write your code if there's no result
            }

        }
    }
Architecture Explanation and Recommendations
Note
Following the recommendations will ensure the security and integrity of the data. You should always store the SALT key securely in your server.
[image: ]
The end user, firstly starts the payment from your app.
Your Android app’s code sets the payment parameters collected from the user and initiates the payment via the Payment Gateway SDK using the classes PaymentParams and PaymentGatewayPaymentInitializer respectively. This is explained in the “Code Explanation” session of this doc.
Payment Gateway SDK actually uses the Payment Gateway Server during the payment process.
Once the payment is completed, the Payment Gateway server sends the Payment Response to the Payment Gateway SDK as well as to your return URL/API.
Recommendations: Your return API/URL on receiving the payment response should perform the below functions:
a) Verify the data authenticity by verifying the HASH: Your webserver code for return API should verify the HASH value received in the payment response to ensure no tampering in the response data. The below shows the recommendations on how the response should be handled in your web server:
[image: ]
· Once the payment response is received as the POST parameter to your return URL, you should extract and store the “Hash key” that is included in the Payment response.
· Use the parameters to calculate the HASH once again in your server using SHA-512 algorithm as shown in the next step.
· Now compare the newly calculated HASH with the HASH in the payment response. If the HASH matches, then store them in your DB server.
b) The below diagram represents how to calculate HASH from the payment response parameters:
[image: ]
The Hash Data String should look something like this:
<SALT>|<address_line_1>|<address_line_2>|<amount>|<cardmasked>|<city>|<country>|<currency>|<description>|<email>|<error_desc>|<name>|<order_id>|<payment_channel>|<payment_datetime>|<payment_mode>|<phone>|<response_code>|<response_message>|<state>|<transaction_id>|<udf1>|<udf2>|<udf3>|<udf4>|<udf5>|<zip_code>
The Hash Key should look something like this:
3E98057AB8600765F28A5085712FC652B4904D27E12D94E19FB13A7D64464D2F22ECECFA413ED874DE984B442B4755D144AAECEB2A6B87380C189213E8C51DD7
Sample Code in PHP to Calculate the HASH as an example:
  private function verifyHash($input, $salt)
	{
	        $responseHash = $input["hash"];
	        unset($input["hash"]);
		
		/*Sort the array before hashing*/
		ksort($input);

		/*Create a | (pipe) separated string of all the $input values which are available in $hash_columns*/
		$hash_data = $salt;
		foreach ($input as $inputParam) {
			if (isset($inputParam)) {
				if (strlen($inputParam) > 0) {
					$hash_data .= '|' . trim($inputParam) ;
				}
			}
		}
		/* Convert the $hash_data to Upper Case and then use SHA512 to generate hash key */
		$hash = null;
		if (strlen($hash_data) > 0) {
			$hash = strtoupper(hash("sha512", $hash_data));
		}
		
		if($hash==$responseHash) return true;

		return false;
	}
Once the response parameters are received from the POST parameters and HASH is extracted, we should recalculate the HASH with the SALT key stored securely in your server using SHA-512 algorithm.
· Firsly, use trim on all the response parameters values.
· Sort all response parameter keys by ascending order.
· Concatenate all the response parameter values by pipe line character:"|" to get HASH data string.
· Now, perform SHA-512 algortihm on them to get the HASH data string to get the HASH.
· Finally, convert the HASH to uppercase before HASH comparison discussed in the above point.
The SDK receives the payment response and parses them into a JSON response. The Json response is passed on to the client’s code via onActivityResult() method.
Recommendations: You must verify if the amount and order_id from the payment response Json matches exactly with the amount and response stored in your server during step 4(explained in step 4 recommendations).
If the amount and order_id matches with the DB server, then display the response and other required details to the end user.

List of Request Parameters
Note
Request parameters are the parameters that will be send to our server API for payment initiation. Client should store the order id and the amount before payment initiation and compare it with the order id and amount in the response Json from our server post payment process to ensure no end user tampering on the requested parameters.
	PARAMETER NAME
	DESCRIPTION
	REQUIRED
	DATATYPE
	FUNCTION NAME

	api_key
	We would assign a unique 40-digit merchant key to you. This key is exclusive to your business/login account.If you have multiple login accounts, there will necessarily be one different api_key per login account that is assigned to you.
	Mandatory
	String - Max:40.
	setAPiKey(api_key)

	order_id
	This is your (merchant) reference number. It must be unique for every transaction. We do perform a validation at our end and do not allow duplicate order_ids for the same merchant.
	Mandatory
	String - Max:30.
	setOrderId(order_id)

	mode
	This is the payment mode ("TEST" or "LIVE" are valid values). "LIVE" is the default value when not specified.
	Optional
	String - Max:4.
	setMode(mode)

	amount
	This is the payment amount.
	Mandatory
	Decimal - Max Digits Before Decimal:15, Max Digits after Decimal:2.
	setAmount(amount)

	currency
	This is the 3-digit currency code (INR).
	Mandatory
	String - Max:3.
	setCurrency(currency)

	description
	Brief description of product or service that the customer is being charged for.
	Mandatory
	String - Max:200.
	setDescription(description)

	name
	Name of customer.
	Mandatory
	String - Max:200.
	setName(name)

	email
	Customer email address.
	Mandatory
	String - Max:200.
	setEmail(email)

	phone
	Customer phone number.
	Mandatory
	String - Max:30.
	setPhone(phone)

	address_line_1
	Customer's address line 1.
	Optional
	String - Max:255.
	setAddressLine1(address_line_1)

	address_line_2
	Customer's address line 2.
	Optional
	String - Max:255.
	setAddressLine2(address_line_2)

	city
	Customer City.
	Mandatory
	String - Max:50.
	setCity(city)

	state
	Customer State.
	Optional
	String - Max:50.
	setState(state)

	country
	Customer Country.
	Mandatory
	String - Max:50.
	setCountry(country)

	zip_code
	Customer Zipcode.
	Mandatory
	String - Max:10.
	setZipCode(zip_code)

	timeout_duration
	Timeout duration (in seconds).
	Optional
	Integer - Min:0,Max:1000.
	setTimeDuration(timeout_duration)

	udf1
	User defined field 1.
	Optional
	String - Max:300.
	setUdf1(udf1)

	udf2
	User defined field 2.
	Optional
	String - Max:300.
	setUdf2(udf2)

	udf3
	User defined field 3.
	Optional
	String - Max:300.
	setUdf3(udf3)

	udf4
	User defined field 4.
	Optional
	String - Max:300.
	setUdf4(udf4)

	udf5
	User defined field 5.
	Optional
	String - Max:300.
	setUdf5(udf5)

	return_url
	This API needs to be created by the Client using their web server to which, Traknpay will automatically send all the response after a payment as a POST request after a payment is completed. Client is required to verify the hash and store the data to their database.This must be HTTPS, not HTTP to ensure a secured line.
	Mandatory
	String - Max:200.
	setReturnUrl(return_url)

	return_url_failure
	We will send all failed transaction response parameters to this URL if specified, else, it will send the failed response to the "return_url" parameter
	Optional
	String - Max:200.
	setReturnUrlFailure(return_url_failure)

	return_url_cancel
	We will send all cancelled transaction response parameters to this URL if specified, else, it will send the cancelled response to the "return_url" parameter.
	Optional
	String - Max:200.
	setReturnUrlCancel(return_url_cancel)

	percent_tdr_by_user
	Percent of tdr amount paid by user.
	Optional
	Integer - Min:0,Max:100.
	setPercentageTdrByUser(percent_tdr_by_user)

	flatfee_tdr_by_user
	Fixed fee paid by user.
	Optional
	Integer - Min:0,Max:99999999.
	setFlatFeeTdrByUser(flatfee_tdr_by_user)

	show_convenience_fee
	Controls whether the convenience fee amount (for surcharge merchants) is displayed to the customer (on the payment page) or not.
	Optional
	String - Max:1.
	setShowConvienceFee(show_convenience_fee)

	split_enforce_strict
	Controls whether payment is required to be split before settlement. By default it is set to ‘n’, If this is set to ‘y’ then settlement will be on HOLD until splitsettlement api is called to provide split information.
	Optional
	String - Max:1.
	setSplitEnforceStrict(split_enforce_strict)

	payment_options
	payment options to be displayed such credit card(cc), netbanking(nb), wallet(w) and atm card(atm).Tabs will be displayed by order in which values are sent. Values accepted are: cc,nb,w,atm (comma separated string).
	Optional
	String - Max:20.
	setPaymentOptions(payment_options)

	payment_page_display_text
	This text will be displayed below the logo on payment page.
	Optional
	String - Max:200.
	setPaymentPageDisplayText(payment_page_display_text)



List of Response Codes
Note
Below are the response codes that comes in the payment response post payment from our server, that must be handled by the client.
	Code
	Response Message
	Description

	0
	SUCCESS
	Transaction successful

	1000
	FAILED
	Transaction failed

	1001
	INVALID-API-KEY
	The api key field is incorrect

	1002
	INVALID-LIVE-MODE-ACCESS
	The live mode access is not allowed

	1003
	INVALID-ORDER-ID-FIELD
	The order id field should to be unique

	1004
	ORDER-ID-FIELD-NOT-FOUND
	The order id field is not found

	1005
	INVALID-AUTHENTICATION
	Invalid authentication at bank

	1006
	WAITING-BANK-RESPONSE
	Waiting for the response from bank

	1007
	INVALID-INPUT-REQUEST
	Invalid input in the request message

	1008
	TRANSACTION-TAMPERED
	Transaction tampered

	1009
	DECLINED-BY-BANK
	Bank Declined Transaction

	1010
	INVALID-AMOUNT
	Amount cannot be less than 1

	1011
	AUTHORIZATION-REFUSED
	Authorization refused

	1012
	INVALID-CARD
	Invalid Card/Member Name data

	1013
	INVALID-EXPIRY-DATE
	Invalid expiry date

	1014
	DENIED-BY-RISK
	Transaction denied by risk

	1015
	INSUFFICIENT-FUND
	Insufficient Fund

	1016
	INVALID-AMOUNT-LIMIT
	Total Amount limit set for the terminal for transactions has been crossed

	1017
	INVALID-TRANSACTION-LIMIT
	Total transaction limit set for the terminal has been crossed

	1018
	INVALID-DEBIT-AMOUNT-LIMIT
	Maximum debit amount limit set for the terminal for a day has been crossed

	1019
	INVALID-CREDIT-AMOUNT-LIMIT
	Maximum credit amount limit set for the terminal for a day has been crossed

	1020
	MAXIMUM-DEBIT-AMOUNT-CROSS
	Maximum debit amount set for per card for rolling 24 hrs has been crossed

	1021
	MAXIMUM-CREDIT-AMOUNT-CROSS
	Maximum credit amount set for per card for rolling 24 hrs has been crossed

	1022
	MAXIMUM-TRANSACTION-CROSS
	Maximum transaction set for per card for rolling 24 hrs has been crossed

	1023
	HASH-MISMATCH
	Hash Mismatch

	1024
	INVALID-PARAMS
	Invalid parameters

	1025
	INVALID-BANK-CODE
	Invalid bank code

	1026
	INVALID-MERCHANT
	Merchant is not active

	1027
	INVALID-TRANSACTION
	Invalid transaction

	1028
	TRANSACTION-NOT-FOUND
	Transaction not found

	1029
	TRANSACTION-TERMINATED
	Transaction terminated

	1030
	TRANSACTION-INCOMPLETE
	Transaction incomplete

	1031
	AUTO-REFUNDED
	Transaction auto refunded

	1032
	REFUNDED
	Transaction refunded

	1033
	SINGLE-TRANSACTION-LOWER-LIMIT-CROSS
	The amount provided is less than transaction lower limit

	1034
	SINGLE-TRANSACTION-UPPER-LIMIT-CROSS
	The amount provided is more than transaction upper limit

	1035
	TRANSACTION-DAILY-LIMIT-CROSS
	The daily transaction limit is exceeded for the merchant

	1036
	TRANSACTION-MONTHLY-LIMIT-CROSS
	The monthly transaction limit is exceeded for the merchant

	1037
	DAILY-TRANSACTION-NUMBER-CROSS
	The daily transaction number is exceeded for the merchant

	1038
	MONTHLY-TRANSACTION-NUMBER-CROSS
	The monthly transaction number is exceeded for the merchant

	1039
	INVALID-REFUND-AMOUNT
	The refund amount is greater than transaction amount

	1040
	INVALID-CVV
	Invalid Card Verification Code

	1041
	AUTO-REFUNDED-TNP
	Transaction is auto refunded by TnP

	1042
	FAILED-NO-RESPONSE
	Transaction failed as there was no response from bank

	1043
	TRANSACTION-CANCELLED
	Transaction cancelled

	1044
	UNAUTHORIZED
	Unauthorized

	1045
	FORBIDDEN
	Forbidden Access

	1046
	TRANSACTION-ALREADY-CAPTURED
	Transaction already captured

	1047
	AUTHORIZED
	Transaction authorized

	1048
	CAPTURED
	Transaction captured

	1049
	VOIDED
	Transaction voided

	1050
	NO-RECORD-FOUND
	No data record found for the given input

	1051
	ACQUIRER-ERROR
	Error occurred at the bank end

	1052
	INVALID-EMAIL
	Invalid Email ID

	1053
	INVALID-PHONE
	Invalid phone number

	9999
	UNKNOWN-ERROR
	Unknown error occurred

	997
	-
	These are unhandled errors coming from banks directly.



image1.jpeg
Client Android APP

5 > Payment Gateway Server

Client Code Payment Gateway SDK

fe—s—f L

Client Web Server

1. User starts the payment in client's app.

2. Client's code then sefs the payment parameters and initates the payment process via the SDK.

3. The SDK in-tum interacts with the Payment Gateway server during the payment process

4. After the payment, the Payment Gateway sends the payment response to the Client's Web server(via the Retum URL) and to the SDK_ At this
point the ciients code i the Clients Web server code should reverif the hash in the payment response and store the response in the Database.

5. The SDK parses the payment response and converts into json and provides it to the Client's code. At this point, client should compare the.
‘amount and order d vith their corresponding value DB in webserver.

6.1fthe values match, Client's Code then displays the payment response to the User





image2.jpeg
Payment Gateway Server

et W Server |

Payment Response

HASH

Payment Response Parameters (includes response_message, response_code, hash, amount, order_id etc)

I—I—I

Parse the HASH from
HASH bl Fayment Response Parameters

Data is Tampered

[Secursly stored SALT)

e Calculate HASH (SHA-512)

]

Client Calculated HASH

Compars HASH

‘Store in Database.





image3.jpeg
Amount——»{
Order ID—»{

| Response Messages
| —Response Code—>/

Left and Right Trim the
spaces on all the
Response Parameters

Sort Parameter Keys
(By Ascending Order)

Concatenate all Response
Farameter Keys via Pipe
Ling" Character T

Hash Data String

SHA-512 Algorithm [ Hash Key

Hash Key





